Uranium Stabilization through Polyphosphate Injection: 300 Area Uranium Plume Treatability Demonstration Project

May 2, 2007

Dawn Wellman (PI)
Vince Vermeul (TL)
Mark Williams
John Fruchter (PM)

Hanford 300 Area in 1962

- North & South Process Pond Inventory 37,000 – 65,000 kg of uranium
 - 1944 1954:
 Effluents from
 REDOX and PUREX
 process development
 - 1978 1986: Nreactor fuels fabrication wastes
 - Enriched, natural, and depleted uranium

The Problem: Persistent Elevated Uranium in 300 Area Groundwater

300 Area Uranium Plume

Exceeding Current Drinking Water Standard 1994 & 2004

Uranium-Phosphate (Autunite) Minerals

- ► Very low solubility.
- ➤ Formation does NOT depend on changing the redox conditions of the aquifer.
- Not subject to reversible processes such as reoxidation or desorption.

Challenges to Phosphate Amendments: **Rapid Precipitation Kinetics**

- Injection of monophosphate molecules results in rapid flocculation and precipitation of phosphate phases
- Sharp decrease in hydraulic conductivity.

- Polyphosphate precludes rapid precipitation
- No measurable decrease in hydraulic conductivity

Solution to Deployment Challenges: Use of Long-Chain Polyphosphates

- Slow reaction with water to yield orthophosphate
- Rate of hydrolysis is related to chain length
 - Time release Controllable kinetics based on to polymer length
- Rate of phosphate mineral formation is directly related to the rate of polyphosphate hydrolysis.
 - Direct treatment of uranium
 - Provides immediate and long-term control of aqueous uranium

Polyphosphate amendment can be tailored to delay formation of autunite and apatite.

Deployment of Phosphate Amendment for In-Situ Immobilization of Uranium

- Injection of soluble polyphosphate
- Lateral plume treatment
- Uranyl phosphate mineral (autunite) formation
 - Immediate sequestration
- Apatite formation
 - Sorbent for uranium
 - Conversion to autunite
 - **Enhancement of MNA**

Uranium Stabilization through Polyphosphate Injection: Field Studies

Seasonal Dynamics of 300 A Uranium **Plume**

300 Area Uranium, June 2006

Treatability Test Site Location

Geologic Cross Section

Local-Scale Geologic Cross Section

300 Area Tracer Injection Test

- NaBr tracer test on Dec. 13, 2006
 - Injection Well: 399-1-23
 - Targeted 60 ft diam. treatment volume
 - Injected Volume: 143,000 gallons
 - 200 gpm for 11.9 hrs
- Inline tracer mixing with water from Well 399-1-7 (620 ft DG)
- Br⁻ conc. measured in injection stream and surrounding monitoring wells
 - Samples analyzed on site with ISE
 - Archive samples → verification by IC
 - Downhole ISE probes installed in all monitoring wells

Tracer Test Results within Targeted Treatment Volume

 $-\overline{n}_{eff}$ (based on tracer arrival)= 0.18

- Consistent with LFI porosity estimates based on physical property analysis

Tracer Results for Downgradient Wells 399 1-32 and 399-1-7

Uranium Stabilization through Polyphosphate Injection: Bench Scale Testing

Laboratory Testing Strategy

- ▶ ³¹P NMR Hydrolysis Experiments
 - Quantified the degradation of polyphosphates in groundwater and heterogeneous systems
 - Homogeneous degradation
 - Aqueous HCO³⁻, Ca²⁺, Na⁺, Al³⁺, Fe³⁺, and Mg²⁺, pH = 6.5 8.0 at 23°C
 - Heterogeneous degradation
- ▶ Batch Tests
 - Amendment Optimization
 - Down selected potential polyphosphate compounds
 - Uranium Sequestration
 - Kinetics of uranium sorption on apatite as a function of pH
 - Loading density of uranium per mass of apatite as a function of pH
 - Kinetics and stability of sorbed uranium
- Column Tests
 - Emplacement Efficiency
 - Amendment Transport
 - Autunite/Apatite Formation

Possible Amendment Components

Amendment Source	Formula	Solubility, g/L cold H ₂ O
Sodium Orthophosphate	Na ₃ PO ₄ • 12H ₂ O	40.2
Sodium Pyrophosphate	Na ₄ P ₂ O ₇ • 10H ₂ O	5 4.1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	145.0
Sodium Trimetaphosphate	(NaPO3)3 4 6H2O	Soluble
Sodium Hexametaphosphate	(NaPO3)8 MIZO	Very Solution
Calcium Dibydrogen Phosphate	Ca(H2PO4)2 1 120	18
Calcium Hydrogen Phosphate	CaHPO4 2H3O	0.32
Calcium Pyrophosphate	Ca3P207 • 5H30	Stightly Selution
Calcium Hypophosphite	Ca(H ₂ PO ₂) ₂	154
Ealcium Chloride	EaEl ₃	745

Site Relevant Speciation

- ► HPO₄-2
- ► H₂PO₄-
- $ightharpoonup H_2P_3O_{10}^{-3}$
- ► HP₃O₁₀-4
- ► H₂P₂O₇-2
- ► HP₂O₇-3

Phosphate Relationships

- ▶ Phosphate
 - Tripolyphosphate
 - Sorbs to sedimentary material (calcite, Fe and Al oxide, clay)
 - Forms fine ppt. w/ Ca
 - Orthophosphate
 - Sorbs to sediment bound tripolyphosphate complexes increasing rate and degree of precipitation
 - Pyrophosphate
 - Forms heavy, fast settling ppt. w/ Ca
- Calcium

Column Testing

- ▶ Test Parameters
 - [P]_{ortho/pyro/tripoly}
 - Calcium/phosphorus ratio
 - [Ca]_{total} & [P]_{total}
 - pH of amendment solution
- ► Column Length = 1 ft
- Cross Sectional Area = 0.005 ft²
- \triangleright Porosity = 0.25
- ► Flow Rate = 1.5 L/day
- ► $[U]_{aq} = 1000 \mu g/L$

Uranium Column Testing

Total
$$[P]_{aq} = 1.05 \times 10^{-2} \text{ M}$$

Pyro $[P]_{aq} = 2.63 \times 10^{-3} \text{ M}$
 $[Ca]_{aq} = 2.32 \times 10^{-2} \text{ M}$

Tripoly
$$[P]_{aq} = 3.94 \times 10^{-3} \text{ M}$$

Ortho $[P]_{aq} = 3.94 \times 10^{-3} \text{ M}$
pH adj. to 7

Uranium Column Testing

Total
$$[P]_{aq} = 5.26 \times 10^{-2} \text{ M}$$

Pyro $[P]_{aq} = 6.58 \times 10^{-3} \text{ M}$
 $[Ca]_{aq} = 9.98 \times 10^{-2} \text{ M}$ $pH = 7$

Total
$$[P]_{aq} = 5.26 \times 10^{-2} \,\text{M}$$
 Tripoly $[P]_{aq} = 8.77 \times 10^{-3} \,\text{M}$ Pyro $[P]_{aq} = 6.58 \times 10^{-3} \,\text{M}$ Ortho $[P]_{aq} = 1.32 \times 10^{-2} \,\text{M}$ $[Ca]_{aq} = 9.98 \times 10^{-2} \,\text{M}$ pH = 7 RT = 56 min PV = 52 mL PV = 1 Ca/ 1P

Post-Test Preliminary Analysis

Aqueous Uranium During Treatment

Ongoing Injection Design Activities

- ► Intermediate scale column test (i.d. = 4", L = 10')
- Develop hydraulic property zonation in the vicinity of the test site
 - Lithologic descriptions
 - Hydraulic test data
 - Changes in hydraulic gradient
 - EBF testing (vertical distribution of K_h)
 - Tracer arrival data
- Perform predictive simulations to evaluate transport under high river stage conditions
- Polyphosphate injection planned for June 07 (high water table conditions)

Acknowledgements

► Funding for this project was provided by the U.S. Department of Energy, Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration.